
SWIFT - Multiblock Analysis Code for Turbomachinery

User’s Manual and Documentation
Version 400, August, 2011

Dr. Rodrick V. Chima

NASA Glenn Research Center, MS 5-12
21000 Brookpark Road

Cleveland, Ohio 44135 USA

phone: 216-433-5919
fax: 216-433-5802

email: Chima@nasa.gov
internet: http://www.grc.nasa.gov/WWW/5810/rvc

download: http:sr.grc.nasa.gov

Introduction

SWIFT is a multiblock computational fluid dynamics (CFD) code for analysis of three-dimensional viscous
flows in turbomachinery. It solves the thin-layer Navier-Stokes equations using explicit finite-difference
techniques. It can be used to analyze linear cascades or annular blade rows with or without rotation. Three
differencing schemes are available – a central difference scheme with artificial viscosity [1, 2], and the AUSM+
[3, 4] and H-CUSCP [4, 5, 6] upwind schemes. Three turbulence models are available – the Baldwin-Lomax [7,
8] and Cebeci-Smith [8, 9] algebraic models, and Wilcox’s 2006 k- model with a stress limiter [10, 11].

The code uses an explicit multistage Runge-Kutta solution scheme to march the solution in time from an
initial guess to a steady-state solution [12]. A spatially varying time step and implicit residual smoothing are used
to accelerate convergence. Preconditioning can be used to accelerate convergence for low speed flows [13, 14].

Limited multi-block capability can be used to model complicated geometries. C-type grids are used to give
good resolution of blade leading edges and wakes. H-grids can used to extend the domain upstream, and O-grids
can be used to resolve hub and tip clearance regions. A mixing plane technique that uses characteristic boundary
conditions can be used for multistage machines [15]. H-grids can also be used to analyze isolated blade rows or
internal duct flows.

Grid input is in standard PLOT3D xyz-file format. Grids are usually generated using TCGRID [16], a
turbomachinery grid code developed by the author. TCGRID is distributed by the NASA Glenn Research Center
Software Repository http://sr.grc.nasa.gov.

SWIFT is written completely in Fortran and runs quickly on a Linux workstation. SWIFT will run on a PC or
Mac, but the user will have to make the appropriate conversions. Parallel processing using OpenMP directives
gives excellent performance on multi-core shared memory computers. Solution files are compatible with most
CFD flow visualization packages.

Six test cases are included with SWIFT and TCGRID:
• Goldman’s annular turbine vane [1, 4, 17]
• The space shuttle main engine (SSME) two-stage fuel turbine [15, 18, 19]
• The NASA large, low-speed centrifugal impeller [14, 20]
• Core compressor rotor 37 [21, 22, 23, 24]
• Core compressor stage 35 [21, 22, 25]
• Transonic fan rotor 67 [2, 25]
Grids for the turbomachinery test cases must be generated with the TCGRID code that is distributed

separately. Comparisons with experimental data are included in separate Excel files.
This report serves as the user’s manual and documentation for SWIFT. The code and some aspects of the

numerical method are described. Steps for code installation and execution are given for Linux systems. The grid,
input, and output variables are described in detail.

 2

Features of SWIFT

Applications
Linear cascades

Axial compressors and turbines

Centrifugal impellers and mixed-flow machines (but no splitters)

Radial diffusers

Pumps

Rectangular ducts

Isolated blade rows or multistage machines

Hub and tip clearances

Multi-block Capability
C-grids around blades

H-grid upstream

O-grids in hub- or tip-clearance regions (or periodic clearance model)

Mixing-planes between blade rows

Discontinuous grids at mixing planes added in version 400

H-grids for blades or ducts

Formulation
Navier-Stokes equations written in Cartesian coordinates with rotation about the x-axis

Thin-layer equations in streamwise direction, all cross-channel viscous terms retained

Central-difference, AUSM+, and H-CUSP differencing schemes for inviscid terms
Central-difference scheme for viscous terms

Turbulence Models
Baldwin-Lomax (algebraic)

Cebeci-Smith (algebraic)

Wilcox’s 2006 two-equation k- model with stress limiter and cross-diffusion terms

Transition and surface roughness effects in all models

Numerical Method
Explicit multi-stage Runge-Kutta scheme

Variable time-step and implicit residual smoothing for convergence acceleration

Preconditioning for low-speed (incompressible) flows

Input
General grid files in PLOT3D format, usually generated using TCGRID

Namelist input of flow parameters

Printed Output
Residual history

Spanwise output of circumferentially averaged flow quantities at the grid inlet and exit

Streamwise output of blade row performance and blade surface properties

Printed output can be edited manually and plotted with Microsoft Excel or other line plot software

Computer Requirements
Fortran 90 compatible compiler

Runs as a quick batch process on Linux, Mac, or Windows computers

Parallel processing on multi-core, shared memory computers using OpenMP directives

Solution times range from one to several hours on multi-core computers

Dynamic memory allocation reduces memory requirements and avoids recompiling for most problems

 3

Graphical Output
No graphical output is provided with SWIFT, but a separate CFD visualization package is needed to view and

evaluate the solutions. Grid, solution, and k- files are written in standard PLOT3D format and can be read

directly and plotted with the public-domain CFD visualization tool PLOT3D or the commercial tools FieldView,

TecPlot, or EnSight CFD. Check the following web sites for more information.

PLOT3D : http://www.nas.nasa.gov/Research/Software/swdescription.html

TecPlot: http://www.tecplot.com/

FieldView: http://www.ilight.com/

EnSight CFD: http://www.ensightcfd.com/

 4

Numerical Method

Multistage Runge-Kutta Scheme

Jameson, Schmidt, and Turkel developed multistage schemes [12] as a simplification of classical Runge-
Kutta integration schemes for ODE’s. The simplification reduces the required storage, but also reduces the time-
accuracy of the schemes, usually to second order. The following discussion of these schemes should give some
guidance in choosing parameters for running the code.

The kth-stage of an n-stage scheme may be written as:

qk = q0 k t RI
k
+ RV

0()

where q is an array of five conservation variables (see Solution Q-File, pp. 28), k is current the stage, q0 is the
previous time step, k are the multistage coefficients discussed below, t is the time step, RI

k is the inviscid part

of the residual, and RV
0 is the viscous part of the residual plus the artificial dissipation, if applicable. Note that

RI
k is evaluated at every stage k, but RV

0 is only evaluated at the initial stage for computational efficiency.

n 1

2

3

4

5

*

2 1.2 1. .95

3 .6 .6 1. 1.5

4 .25 .3333 .5 1. 2.8

5 .25 .1667 .375 .5 1. 3.6

Table 1. Runge-Kutta parameters and maximum Courant number for n-stage schemes.

The maximum stable Courant number * for an n-stage scheme can be shown to be * n 1 . The actual

stability limit depends on the choice of k . For consistency n must equal 1. For second-order time accuracy
n 1 must equal 1/2. The values of k used in the code and the theoretical maximum Courant number * are set

by a data statement in SWIFT subroutine setup and are given in table 1.
The number of stages is set with the variable nstg. Nstg = 4 is recommended, although Jameson et al. tend to

favor 5 stages. The 2-stage scheme (nstg = 2) is very robust and often works when everything else fails.
A spatially-varying t is used to accelerate the convergence of the code. Setting ivdt = 1 sets the Courant

number to a constant (input variable cfl) everywhere on the grid, and recalculates it every icrnt iterations. This
option is strongly recommended. Set icrnt to a moderate number, e.g. 10, so that the time step is recalculated
occasionally. The time step is recalculated when the code is restarted, which can cause jumps in the residual if
icrnt is too big.

Implicit residual smoothing (described later) can be used to increase the maximum Courant number by a
factor of two to three, thereby increasing the convergence rate as well.

Artificial Viscosity

The central-difference scheme is selected by setting icdup = 1 (the default.) It is the fastest of the three
differencing schemes used in SWIFT, it gives moderately smeared shocks, and it may show velocity overshoots
at the edge of boundary layers. It is recommended when quick answers are desired.

Second-order central differences require an artificial viscosity term to prevent odd-even decoupling. A
fourth-difference artificial viscosity term is used for this purpose. This term is third-order accurate in space and
thus does not affect the formal second-order accuracy of the scheme. The input variable avisc4 scales the fourth-
difference artificial viscosity, and should be set between 0.25 and 2.0 A good starting value is 1.0. If the solution
is wiggly, increase avisc4 by 0.25. If it is smooth, try reducing avisc4 by 0.25. Larger values of avisc4 may
improve convergence somewhat, but the magnitude of avisc4 has little effect on predicted losses or efficiency.

The code also uses a second-difference artificial viscosity term for shock capturing. The term is multiplied by
a second difference of the pressure that is designed to detect shocks. Note that the second-difference artificial
viscosity is first order in space, so that the solution reduces to first-order accurate near shocks. Two other

 5

switches developed by Jameson, et al. [12] are used to reduce overshoots around shocks. The input variable
avisc2 scales the second difference artificial viscosity. Avisc2 can be set to 0.0 for purely subsonic flows, and is
usually set to 1.0 for flows with shocks. If shocks are wiggly, increase avisc2 by 0.5. If they are smeared out, try
decreasing avisc2 by 0.5. Shocks will be smeared over a few cells regardless of the value of avisc2. The
magnitude of avisc2 has little effect on predicted loss or efficiency.

Eigenvalue scaling described in [2] is used to scale the artificial viscosity terms in each grid direction. This
greatly improves the robustness of the code. The artificial viscosity is also reduced linearly by the grid index near
walls to reduce its effect on the physical viscous terms. Input variables jedge, kedgh, and kedgt are the indices
where the linear reduction begins.

For computational efficiency the artificial viscosity is usually calculated only at the first stage of the Runge-
Kutta scheme. This works well for most problems, but for difficult problems the robustness of the scheme can be
improved by updating the artificial viscosity more often. This is selected by setting ndis = 2. For nstg = 2 or 3
this has no effect. For nstg = 4 the artificial viscosity is calculated at stages 1 and 2. For nstg = 5 the artificial
viscosity is calculated at stages 1, 3, and 5. The physical viscous terms are calculated at the same time as the
artificial viscosity. Thus, setting ndis = 2 increases the CPU time per stage significantly, but it is so reliable that
it is usually the preferred scheme.

AUSM
+
 Upwind Scheme

The Advection Upstream Splitting Method (AUSM+) upwind scheme is selected by setting icdup = 1. It is the
least dissipative but slowest of the three differencing schemes used in SWIFT. It is recommended for most
problems.

The AUSM+ family of upwind schemes was developed by Meng-Sing Liou and others [3, 4]. The AUSM+
scheme defines a cell interface Mach number based on characteristic speeds from neighboring cells. The
interface Mach number is used to determine the upwind extrapolation for the convective part of the inviscid
fluxes. A separate splitting is used for the pressure terms. The van Albada limiter is used to estimate interface
fluxes with second-order accuracy.

The speed of sound at the cell interface is multiplied by a function that effectively scales the numerical
dissipation with the local flow speed, giving appropriate amounts of dissipation for all flow speeds. The scaling
function is based on an average interface Mach number that must be limited by a cutoff relative Mach number
Mref . Reference Mach numbers for rotors and stators are set using input variables refmr and refms, which should

be the largest relative Mach number expected in those blade rows, but limited to a maximum of 1.0. The
reference values are then reduced by the factor ausmk = 0.2 – 1.0.

H-CUSP Upwind Scheme

The Convective Upwind Split Pressure (CUSP) upwind scheme is selected by setting icdup = 2. It gives the
sharpest shocks but is the most dissipative of three differencing schemes used in SWIFT. It is second in
execution speed. It is only recommended for occasional problems where the AUSM+ scheme will not converge.

CUSP schemes were described by Tatsumi, Martinelli, and Jameson in [5, 6]. The H-CUSP scheme uses the
stagnation enthalpy h as the conservation variable in the energy equation. The scheme was developed as a flux-
split scheme similar to AUSM+, but it is implemented as a limited dissipative flux added to a central-difference
scheme. Jameson’s SLIP limiter is used to produce a second-order non-oscillatory scheme. For computational
efficiency the dissipative fluxes are updated less often than the central-difference fluxes. The implementation in
SWIFT is described in [4].

Like the AUSM+ scheme, the H-CUSP scheme requires a cutoff Mach number Mref . Reference Mach

numbers for rotors and stators are set using input variables refmr and refms, which should be the largest relative
Mach number expected in those blade rows, but limited to a maximum of 1.0. The reference values are then
reduced by the factor hcuspk = 0.05 – 0.20.

Implicit Residual Smoothing

Implicit residual smoothing is selected by setting irs = 1. It was introduced by Lerat in France and
popularized by Jameson in the U.S. as a means of increasing the stability limit and convergence rate of explicit
schemes. The idea is to run the multistage scheme at a high, unstable Courant number, but maintain stability by
smoothing the residual occasionally using an implicit filter. The scheme can be written as follows:

 6

1() 1() 1()R = R

Here , , and

are constant smoothing coefficients in the body-fitted coordinate directions , , and ,

shown in Fig. 1, is a second-difference operator, R is the smoothed residual, and R is the unsmoothed

residual.

It can be shown that implicit residual smoothing does not change the solution if the scheme converges. Linear
stability theory shows that the scheme can be made unconditionally stable if the i are big enough, but also

shows that the effects of artificial viscosity are diminished as the Courant number is increased. In practice the
best strategy is to double or triple the Courant number of the unsmoothed scheme. If the residual is smoothed
after every stage, the theoretical 1-D values of i needed for stability are given by:

i

1

4 *

2

1

where * is the Courant limit of the unsmoothed scheme (given in Table 1), and is the larger operating
Courant number. For example, to run a four-stage scheme at a Courant number = 5.6 , the smoothing
coefficient should be:

i

1

4

5.6

2.8

2

1 = 0.75

A single variable eps = is input to SWIFT. The 1-D limit for given above usually works well, but can be
increased up to 2.5 if the solution blows up, and can be decreased slightly to improve convergence if the
solution is stable. Values of are scaled within the code at each grid point by multiplying eps by the same
Eigenvalue scaling coefficients used for the artificial dissipation. This has proven to be quite robust. epi, epj, and
epk can be used to scale eps in the i-, j-, and k-directions, but they are usually left at their default values of 1.0.

Implicit residual smoothing involves a scalar tridiagonal inversion for each variable along each grid line in
each direction. It adds about 20 percent to the CPU time when applied after each stage. Smoothing can be done
after every other stage to reduce CPU time (about 7 percent) by setting irs = 2, but eps must be increased
(approximately doubled.) This option is rarely used.

Preconditioning

Density-based schemes like SWIFT solve the continuity equation by driving the density residual to zero. For
low speed (nearly incompressible) flows the density residual is physically near zero, and so the schemes fail to
converge. Preconditioning, described by Turkel in [13], improves the convergence rate in two ways. First, it
replaces the q-variables q = [, u, v, w, e]with variables that are better behaved at low speeds,

W = [p, u, v, w, h] , where p is the pressure and h is the total enthalpy. Second it multiplies the equations by a

matrix designed to equalize the wave speeds of each equation. Preconditioning works extremely well for the
Euler equations and less well for the Navier-Stokes equations. It allows solutions to be run at very low flow
speeds that simply would not converge otherwise.

It can be difficult to get a solution started with preconditioning. It is usually best to run 200-500 iterations
with preconditioning turned off, then run to convergence with preconditioning turned on.

The preconditioning operator is designed so that it has no effect on the steady-state solution; however, for the
central-difference scheme preconditioning also modifies the artificial dissipation operator. This tends to reduce
the artificial dissipation when preconditioning is used.

The preconditioning matrix has the local relative Mach number in the denominator and must be by a cutoff
Mach number Mref . Reference Mach numbers for rotors and stators are set using input variables refmr and

refms, which should be the largest relative Mach number expected in those blade rows, but limited to a maximum
of 1.0. The reference values are then reduced by the factor pck = 0.1 – 0.3. The solution will diverge quickly if
these parameters are too small, and may converge slowly if they are too big.

At low Mach numbers the default inlet boundary condition may not work properly. If contour plots of
pressure or velocity look bad near the inlet, set ibcinu=2 to extrapolate meridional velocity at the inlet.

 7

Recommended Numerical Parameters

nstg ndis cfl eps Comments

2 1 2.5 1.35–1.60 very robust, fast per stage

4 2 5.6 0.75–1.00 good overall scheme

5 2 7.0 1.25–1.50 slow per stage, fast convergence

Table 2 Recommended numerical parameters for three Runge–Kutta schemes.

Table 2 lists recommended parameters for three numerical schemes, in order of the author’s preference. For
all schemes use irs = 1. For the central-difference scheme use avisc2 = 1.0 and avisc4 = 0.5.

Turbulence Models

The turbulence model is selected using input variable ilt (Inviscid, Laminar, Turbulent,) see &nam5 –
Viscous Parameters, pp. 20.

Three turbulence models are available in SWIFT the Baldwin-Lomax model, the Cebeci-Smith model, and
Wilcox’s 2006 two-equation k- model. All three models include transition models and surface roughness
effects.

Baldwin-Lomax and Cebeci-Smith Turbulence Models

The Baldwin-Lomax model is selected by setting input variable ilt = 2. The model is implemented as
described in the original reference [7], except that two constants have been changed to CCP = 1.216 and

CKleb = 0.646 . The length scale for the Baldwin-Lomax model is correlated to the maximum of a function

f = y D , where y is the distance from the wall, is the magnitude of the vorticity, and D is the Van Driest

damping function. In some cases that maximum is not well behaved, so SWIFT limits the search to grid lines at
indices jedge away from the blade, kedgh from the hub, and kedgt from the tip. Indices jedge, kedgh, and kedgt
should be chosen slightly larger than the largest extent of the boundary layer. Solutions are usually insensitive to
values of these parameters if they are big enough, but may under predict viscous effects if they are too small.

The Cebeci-Smith model is selected by setting input variable ilt = 3. The model is implemented like the
Baldwin- Lomax model except that the length scale is found by integrating

f dy = *

0
ue

as described in [8]. Here the upper bound of the integral is usually found automatically since f 0 as y .

However, cases with free-stream vorticity can have a non-zero f outside the boundary layer, so again input

variables jedge, kedgh, and kedgt are used to bound the integrals in SWIFT. The Cebeci-Smith model is very

reliable for turbine heat transfer problems, but is not recommended for transonic compressors that may produce

free-stream vorticity behind the bow shock.

 Transition is predicted in both models at the location where μturb μlam > cmutm , where cmutm is an input

variable usually set to 14, as recommended in [7]. The model is crude but often works surprisingly well for
moderate Reynolds numbers and low free-stream turbulence.

Roughness effects are included in both models using the Cebeci-Chang roughness model [9]. The model
modifies the turbulent length scale based on the equivalent sand-grain roughness height in turbulent wall units
h+ . The roughness height is input using variable hrough, and h+ is calculated internally. If hrough = 0.0 a model
for a hydraulically smooth surface is used.

Wilcox k- Turbulence Model

The k- model is selected by setting input variable ilt = 4 or 5. The model is described in [10], and
implemented as described in [11] using a first-order upwind ADI scheme. Two versions of the model are
included, a baseline model (ilt = 4) and a low Reynolds number model (ilt = 5). The baseline model gives a fully

 8

turbulent solution that is valid all the way to the wall, unlike k- models. The low Reynolds number model
includes transition effects.

Wilcox’s 2006 model includes a cross-diffusion term that reduces dependence on freestream values of , and
a shear stress limiter that reduces the turbulent viscosity when production of turbulent kinetic energy exceeds
destruction. The shear stress limiter has been shown to improve results for shock-separated flows. The stress
limiter is selected by setting isst = 1.

Three input parameters affect the k- model, the surface roughness hrough as described above, the free-
stream turbulence level tintens (typically 0.0 to 0.05), and the free-stream turbulent viscosity
tmuinf = μturb μ0r()

in
, typically 0.1. Solutions are generally insensitive to tmuinf, except for the location of

transition.
Previous versions of SWIFT used a turbulent length scale tlength instead of tmuinf. Tlength was awkward to

use but has been retained in the code for backward compatibility.

 9

Nondimensionalization

Ref. State English Units SI Units
P0r 2116.8 lbf/ft

2 1.0135 x 105 Pa

T0r 519 R 288.3 K

c0r 1116.7 ft/sec 340.39 m/sec

0r .0765 lbm/ft3 1.2246 kg/m3

 85.427 lbm/sec/ft2 416.8416 kg/sec/m2

μ0r 1.197 x 10-5 lbm/(ft sec) 1.71 x 10-5 kg/(m sec)

 7.137 x 106 [1/ft]

5.947 x 105 [1/in]

2.437 x 107 [1/m]

2.182 x 105 [1/cm]

Table 3. Standard reference quantities usually used for nondimensionalization.

The grid xyz-file may be input in arbitrary units of length. The input parameters to SWIFT and the variables
in the output q-file are all nondimensional except for lengths, which have the same units as the grid.

All quantities are nondimensionalized by an arbitrary reference stagnation state defined by stagnation density

0r , sonic velocity c0r = RT0r , and laminar viscosity μ0r . Standard atmospheric conditions, given in Table 3

above, are often used for the reference state for a compressor in a test cell. However, any self-consistent state
may be used as long as the units of length are consistent with the grid units. For example, for a fan in an engine
at flight conditions it is useful use freestream total conditions for the reference state.

 Input pressures and temperatures are nondimensionalized by P0r and T0r , respectively. Within the code

pressures are usually nondimensionalized by 0rc
2
0r = P0r . Inlet pressures and temperatures are

nondimensionalized similarly, so that P0in = T0in = 1.0 when the inlet is at standard conditions. However, P0r and

T0r can also be set arbitrarily using the initial condition input (see Initial Condition Input, pp 24) or a qin file

(see Inlet and Exit Profiles, pp. 29). Input velocities are sometimes nondimensionalized by c0r , but are usually

input as a Mach number.
The reference state defines a reference Reynolds number renr that must be input to SWIFT (see &nam5 –

Viscous Parameters, pp. 20). renr = 0rc0r / μ0r has units of [1/grid units]. renr is the same for all cases with the

same reference state and grid units.
Output quantities should be self explanatory, except for the mass flow. The mass flow may be output with the

residual history (see variable mioe under &nam6 – Output Control, pp. 22). Mass flow is also output in the tables
labeled “theta-averaged quantities,” at the bottom of the column labeled “% mdot.” In either case, the mass flow
is nondimensionalized by and has units of [grid units]2. The mass flow through the full annulus is given

(rather than mass flow per passage,) so that the printed mass flow should be constant through a multistage
machine.

0rc0r

renr

0rc0r

 10

Calculations for liquids

Nondimensionalization
Nondimensionalize using conditions for liquids, but calculate c0r as if for air.

R = 1716.58 ft2/(sec2 R) ideal gas constant

 = 1.4 Cp / Cv

T0r = 60 F = 519 R

c0r = 1116.7 ft / sec

0r = 62.37 lbm / ft3

P0r = 0r R T0r = 1,725,644 lbf / ft
2

0r = 1.217e-5 ft2 / sec kinematic viscosity for water at 60 F

vispwr = 1 laminar viscosity ~ T

renr = c0r / 0r = 7.646e6 / in (convert to appropriate grid units)

om = omega [rad / sec] / c0r (convert to appropriate grid units)

Initial Conditions
Calculate the inlet and exit velocities V1 and V2 from the flow rate Q and areas A using
 V = Q / A .

Approximate the Mach numbers for the initial conditions using
 M V / c0r .

Calculate the total pressure rise dp0 from the head rise H using
 P0 = gH .
Calculate the pressure ratios for the initial conditions using
 P02 / P01 = (P01 + P0) / P01 .

Calculate the temperature ratios for the initial conditions using
 T02 /T01 = P02 / P01 .

Calculate the static pressure rise using
 P = P0 0.5 (V 2

2 V 2
1)

Calculate prat using
 prat = P2 / P01 = (P1 + P) / P01 .

This should give a solution close to the correct flow rate, but you will probably have to run several cases with
diffeent values of prat to get the flow rate exactly.

Preconditioning
Run SWIFT 200 – 500 iterations with no preconditioning, using:
icdup=0, nstg=2, avisc2=1, avisc4=1, cfl=2.5, eps=1.5, ibcinu=1, ipc=0.

Then restart with preconditioning turned on (see Preconditioning, pp. 6), with:
icdup=0, nstg=2, avisc2=1, avisc4=1, cfl=2.5, eps=1.5, ibcinu=1, ipc=1, refmr=.15, pck=.30.

The AUSM+ scheme works well at low speeds. Try:
icdup=1, nstg=2, cfl=2.5, eps=1.5, ibcinu=1, ipc=1, refmr=.15, pck=.30, ausmk=0.3.

P

 11

 Grids

SWIFT can handle single-block grids and a limited variety of multi-block grids. Grids are usually generated
using TCGRID [16]. Dummy grid lines are used to handle periodic boundary conditions and transfer of
information between blocks, and must be included in the grid file. All grid types currently supported by SWIFT
will have a dummy grid line at j=jm, except for grids in rectangular ducts which have no dummy grid line. Grids
are stored in standard PLOT3D format (see Grid XYZ-File, pp. 28).

The connectivity between the grids is specified using an index file (see Index File, pp. 25). In TCGRID,
setting iswift=1 in namelist 5 will automatically add dummy grid lines and produce a preliminary index file.

C-grids (Blades)
The basic SWIFT grid consists of a C-type grid around a blade, as shown in Figure 1. The i-direction goes

from i=1 at the lower exit to i=im at the upper exit. The j-direction goes from j=1 at the blade to j=jm-1 at the
periodic boundary (j=jm at the dummy grid line.) The k-direction goes from 1 at the hub to k=km at the tip.
Calculations run with a single grid avoid some data I/O and thus run about 10 percent faster than a multiblock
grid with the same number of points.

H-grids (Upstream, Blades, Rectangular Ducts)
Three types of H-grids are supported in SWIFT v.300. The type of H-grid is flagged by index file variable i1

(see Index File, pp. 25).
1. An H-grid can be added to extend a C-grid upstream, as shown in Figure 2. A dummy grid line is needed at

j=jm to apply the periodic boundary conditions. Flagged by setting i1 = 0.

2. An H-grid can also be used inside a rectangular duct (not shown.) No dummy grid lines are needed.

Multiblock grids are not supported with this grid type. Flagged by setting i1 = 1.

3. A single H-grid can be used inside a blade passage, as shown in Figure 3. A dummy grid line is needed at

j=jm to apply the periodic boundary conditions. Multiblock grids are not supported with this grid type.

Flagged by setting i1 = leading edge index > 1.

In each case the i-index goes from inlet to exit, the j-direction goes from blade to blade, and the k-direction goes
from hub to tip.

O-grids (Hub and Tip Clearance Gaps)
O-type grids can be used to resolve the hub or tip clearance regions of blade (visible in Figure 5). Clearance

regions can also be modeled using a simple periodic boundary condition that does not require gridding the
region. For O-grids the i-direction starts at the trailing edge cut and wraps around the O. The j-direction starts at
the center line cut and goes to the perimeter of the O. j=jm is a dummy grid line that overlaps the connecting C-
grid by one point. The k-direction goes from the hub to the blade for hub clearances, or from the blade to the
casing for tip clearances.

Multistage Grids
Multistage C-grids are generated one blade row at a time using TCGRID. The individual grids must meet

certain requirements:
1. Use identical hub and tip coordinates for all blade rows.

2. The blades must be in the correct location and orientation. Use ztrans to move the blades axially, and tflip

to flip the -coordinates if necessary.

3. The grids must match at an interface between the blades. Set the exit boundary coordinates of grid 1 to the

inlet boundary coordinates of grid 2. Place the interface midway between the blades, or close enough to

blade 2 to get a good C-grid.

4. For SWIFT, the grids must overlap exactly one cell at the interface. On grid 1 set dswex to give a fine

spacing near the exit, and set dslap = dswex. This resets the grid spacing at the exit from approximately

dswex to exactly dslap. On grid 2 set dsmax2 = dslap1. This will cause the dummy grid line from grid 2 to

overlap grid 1 by dsmax.

5. The relative circumferential spacing between the grids does not matter.
SWIFT version 400 allows non-point-matched grids at mixing planes. Neighboring grids can have different

numbers of points and discontinuous spacings in the spanwise direction. However, using continuous grids across
mixing planes may improve solution continuity, and will simplify printed and graphical output at a given
spanwise location.

 12

Grids and index files from neighboring blade rows are merged into a multi-block PLOT3D file using a
Fortran program called multix.f. The merged index file will have the correct block sizes and key indices, but
must be edited manually to set block connectivity, and options for mixing planes, clearances, and endwall
rotation. Additional details about generating multistage grids are given in the TCGRID user’s manual [16].

 13

Unzipping, Compiling, and Running SWIFT

SWIFT is supplied as a zipped file. It will unzip into a directory with the same name as the file. This
documentation should be in the main directory. There are subdirectories for source code and test cases. On a
Linux system:

unzip swift_400.zip

Compiling SWIFT

Go to the src directory and edit the Makefile. Compiler commands are set for the Intel Linux compiler,
FC = ifort –O3 –ipo –xP –parallel -openmp

Change the commands as necessary for your compiler. Here
-O3 gives full optimization
-ipo enables interprocedural optimization
-xP optimizes for Intel Core architectures
-parallel generates parallel code
-openmp tells the compiler to use the OpenMP directives in SWIFT

Near the bottom of the Makefile there may be a line that moves the executable to a bin directory. Keep or

remove this line as desired.
mv swift ~/bin

Save the file and exit.
Most arrays are allocated dynamically, but a few work arrays have fixed maximum dimensions. Edit

modules.f90 and modify the maximum dimensions in module maxsize if desired. Default values for most input
variables are also set here.

integer, parameter::ni=255, nj=63, nk=63
Run make. Move the executable swift to a directory in your path.
Clean up object and executable files if desired by running

make clean

File Names

Unit Default name Description Reference
fort.1 grid.xyz grid file from TCGRID Grid XYZ-file, pp. 28

fort.2 q_in.q binary input solution file, read if iresti=1 Solution Q-File, pp. 28

fort.3 q_out.q binary output solution file, written if iresto=1 Solution Q-File, pp. 28

fort.10 index.dat text index file, required Index File, pp. 25

fort.7 kw_in.kw binary input k- file, read if ilt = 4 or 5 Turbulence Model k- file, pp. 28

fort.8 kw_out.kw binary output k- file, written if ilt = 4 or 5 Turbulence Model k- file, pp. 28

fort.13 profile_in.dat text input qin file, read if iqin = 1 Inlet and Exit Profiles, pp. 29

fort.14 profile_ex.dat text output pex file, read if ipex = 1 Inlet and Exit Profiles, pp. 29

fort.15 profile_out.dat text output span file, written if ispan = 1 Inlet and Exit Profiles, pp. 29

Table 4. Files used by SWIFT.

The namelist input file for SWIFT is read from fort.5 (standard input.) Printed output from SWIFT is written
to fort.6 (standard output.) Files linked to other Fortran units may be used in the execution of SWIFT, depending
on input options. The files are described in Table 3 above.

All input text files are read using unformatted read statements, i.e., read(5,*), so you don’t have to worry
about getting the data in the right columns.

If iopen = 0 (default) the files are not explicitly opened in the code. You must link the files to the appropriate
Fortran unit manually, e.g.,

 14

ln grid.xyz fort.1
ln qin.q fort.2
etc.
If iopen = 1 all files are opened using the default names in Table 4. This may be most useful under Windows.

Note: It is also possible to input your own file names using the namelist input. Edit subroutine openfile.f,

uncomment the one line that reads namelist 7, and recompile.
! read (5,nl7)
Add namelist & nl7 to your input file and reset the prefix of any default file names using character strings,

e.g.,
&nl7 grid=’gold.xyz’ q_in=’gold.0050.q’ &end
Any file names not reset retain their default names.

Running SWIFT

First set an environment variable to the number of processors you want to use:
setenv OMP_NUM_THREADS n
where n is the number of processors with shared memory. For a quad-core processor use n = 4.

SWIFT is run as a standard Linux process:
swift < input_file > output_file &

Linux Shell Scripts

Linux c-shell scripts are included for running each case. The scripts do the following:

Set prefixes pin and pout for input and output file names. Input files will be named pin.q and pin.kw. Output
files will be named pout.out, pout.q, and pout.kw. You may want to include the iteration count in the prefixes. If
you use the same prefix for both, the output files will overwrite the input files at completion.

set pin=input_prefix #set input prefix here
set pout=output_prefix #set output prefix here

Link the input and output files to the appropriate Fortran unit numbers. Link the grid and index files here.
ln grid.xyz fort.1 #set grid file here
ln case.ind fort.10 #set index file here

ln $qin fort.2 #restart q input
etc.

Link the k- turbulence model files.
set kw=1 #set to zero if not running the k-w model
…
endif

Cat (concatenate) the namelist data below to a file called input until the line labeled EOIN is reached. Change

your SWIFT input here.
cat > input << EOIN
 ‘Title goes here’
&nl2 cfl=5.6 … &end
…
EOIN

Run SWIFT in the background and use tail to follow the output.
swift < input > $out &
tail -f $out
You can kill the tail command with <control> c.

 15

SWIFT Input
Namelist input is used for most variables. Many variables have defaults assigned and can be defaulted (not

input.) Defaults are given in angle brackets, <Default=value> or <default>. If no default is given the value
MUST be input.

Title

ititle A text string of 80 characters or less enclosed in single quotes. The text is printed to the output.

&nam2 - Algorithm Parameters

nstg Number of stages for the Runge-Kutta scheme, usually 4, but can be 2 5, <default = 4>.

ndis Number of evaluations of artificial viscosity per stage. More than one evaluation usually

improves robustness but increases CPU time, <default = 1>.

 ndis > 1 gives 2 evaluations at stages 1 and 2 for nstg = 4.

 ndis > 1 gives 3 evaluations at stages 1, 3, and 5 for nstg = 5.

icdup Flag for the type of differencing scheme.

 = 0 Central-difference schemes, requires avisc2 and avisc4, <default>.

 = 1 AUSM+ scheme, requires ausmk, refmr and/or refms.

 = 2 H-CUSP scheme, requires hcuspk, refmr and/or refms.

cfl Courant number, typically 5.6 (see Multistage Runge-Kutta Scheme, pp. 4.) If ivtstp = 0, cfl is

the maximum Courant number, usually located somewhere near the leading edge at the blade

surface. If ivtstp = 1, the Courant number will equal cfl everywhere. <default = 5.0>.

avisc1 First-order artificial dissipation coefficient. Not recommended, but can sometimes be used to

stabilize a solution that blows up at startup. Set avisc1 = 1.0 for the first 50 100 iterations if

necessary, but be sure to set avisc1 = 0.0 as soon as the solution is running stably.

avisc2 Second-order artificial dissipation coefficient. Typically 0.0 2.0. Use 0.0 for purely subsonic

flow or 1.0 for flows with shocks, <default = 1.0>.

avisc4 Fourth-order artificial dissipation coefficient. Typically 0.25 - 1.5. Start at 1.0 and reduce

avisc4 to 0.5 if possible, <default = 1.0>.

irs Implicit residual smoothing flag. Usually = 1. (See Implicit Residual Smoothing, pp. 5.)

 = 0 No residual smoothing.

 = 1 Implicit smoothing after every Runge-Kutta stage, <default>.

 = 2 Implicit smoothing after every other stage. eps must be increased for this option to work.

Rarely used.

eps Overall implicit smoothing coefficient based on the 1-D stability limit, (see Implicit Residual

Smoothing, pp. 5). SWIFT will calculate the 1-D limit if eps is defaulted.

epi, epj, epk Implicit smoothing coefficient multipliers for the i, j, and k directions, (see Implicit Residual

Smoothing, pp. 5). Rarely used, <default = 1.0>.

 16

itmax Number of iterations, typically 100 1000 per run, but 1000 3000 will be needed for a

converged solution.

ivdt Variable time step flag.

 = 0 Spatially constant time step.

 = 1 Spatially variable time step, <default, highly recommended>.

ipc Preconditioning flag, (see Preconditioning, pp. 6).

 = 0 No preconditioning, <default>.

 = Preconditioning using the Merkel, Choi, Turkel scheme. Should give a substantial speedup

for Mach numbers < 0.3.

 = 2 Solves the equations using the preconditioning variable set, but sets the preconditioning

matrix to the identity matrix. Used to debug the preconditioning routines. Rarely used.

refms, refmr Reference relative Mach numbers Mref used for the preconditioning, H-CUSP and AUSM+

schemes. Refms is an absolute Mach number used for stators and refmr is a relative Mach

number used for rotors. Should be approximately the largest Mach number expected in the

flow, but less than 1.0. Reference Mach numbers for the preconditioning, H-CUSP and

AUSM+ schemes are adjusted using pck, hcuspk, and ausmk.

pck Constant used to scale Mref for preconditioning (Turkel’s parameter k.) The denominator in

the preconditioning matrix is limited to be > pck Mref()
2
. Typically 0.1 0.3. Smaller values

may improve convergence, but larger values may be necessary for stability. <default = 0.15>.

hcuspk Constant used to scale Mref for the H-CUSP scheme. In the H-CUSP scheme the low-speed

dissipation is scaled by max M ,hcuspk Mref()
2

() , so that hcuspk sets the minimum value of

dissipation. Typical values are 0.05 – 0.10. Smaller values may cause wiggles in the solution.

Larger values may improve convergence but will increase predicted losses. <default = 0.05>

ausmk Constant used to scale Mref for the AUSM+ scheme. In the AUSM+ scheme the numerical

speed of sound is used to calculate the pressure fluxes and the pressure diffusion term. The

numerical speed of sound is a function of a reference Mach number ausmk Mref()
2

, so

ausmk also controls the dissipation of the scheme, but in a less obvious way than hcuspk.

Typical values are 0.3 – 0.8. Larger values are needed for convergence but don’t hurt accuracy.

<default = 0.8>.

&nam3 - Boundary Condition & Code Control

The flow equations in SWIFT are formulated using Cartesian velocity components (u, v, w) . The velocity

components used in the boundary conditions depend on the geometry. Cartesian velocity components (u, v, w)

are used for linear geometries (igeom = 0), and modified cylindrical velocity components (vm , v , vr) are used for

cylindrical geometries (igeom = 1, the default). Here vm = vz
2
+ vr

2 is the meridional velocity component. Input

variables described below are written using cylindrical components, but should be replaced with Cartesian
components for linear problems.

 17

Inlet boundary
P0 and T0 are held constant at the inlet boundary. Three flags, ibcinu, ibcinv, and ibcinw, determine how the

inlet velocity components are determined. A single flag, ibcin, can be used to set some of the most commonly
used combinations. Properties that are held constant are either generated from the initial condition data in the
input file, or are read directly from a qin-file.

ibcinu Inlet boundary condition flag for vm .

 = 1 Extrapolate a Riemann invariant based on vm to the inlet. Used for most problems.

<default>

 = 2 Extrapolate vm to the inlet. Recommended for low speed flows, especially with

preconditioning.

ibcinv Inlet boundary condition flag for v .

 = 1 v is held constant, <default>.

 = 2 tan = v / vm is held constant.

ibcinw Inlet boundary condition flag for vr .

 = 1 vr is held constant, <default>.

 = 2 tan = vr / vm is held constant.

 = 3 vm is held tangent to the meridional grid lines at the inlet, <default>.

ibcin Obsolete inlet boundary condition flag. ibcinu is set as above, and ibcinv = 2.

 = 0 or defaulted: ibcinu, ibcinv and ibcinw set as described above.

 = 1 Sets ibcinw = 3.

 = 2 Supersonic meridional inflow velocity - all quantities are held constant. (Rarely used

except for the NASA supersonic throughflow fan project).

 = 3 Sets ibcinw = 2.

 = 4 Sets ibcinw = 1.

Exit Boundary
Four primitive variables are extrapolated to the exit. The input parameter prat gives the exit pressure. The

parameter ipex determines where prat is specified and determines how the spanwise pressure distribution is
calculated.

ibcex Exit boundary condition flag.

 = 1 Prat is specified as a constant. Only applicable to linear geometries, or annular geometries

with radial outflow.

 = 2 Supersonic meridional outflow. P is extrapolated to the boundary. Prat is not used.

(Rarely used except for the NASA supersonic throughflow fan project).

 = 3 Prat is specified at the exit. The spanwise variation of p is found by solving the radial

equilibrium equation,

 18

dp

dr
=

v 2

r

 and p is constant blade-to-blade, <default>.

 = 4 Prat is specified at the exit. The spanwise variation of p is found by solving the radial

equilibrium equation. p is found as a perturbation about p using a characteristic boundary

condition developed by Giles.

ipex Flag that tells where prat is specified. This can affect the stability range of compressors.

 If igeom = 0, prat is held constant over the exit.

 = 0 Prat is specified at the hub, <default>.

 = -1 Prat is specified at the tip. Use for tip-critical compressors.

 = 1 Exit pex-file is read from an exit profile on fort.14, (see below).

Inlet and Exit Profile Controls
Inlet profiles of P0 , v , vr , and T0

, and exit profiles of pstat can be specified as boundary conditions for

SWIFT. For convenience, a common file format is used for both inlet and exit (see Inlet and Exit Profiles, pp.
29). The profiles are input as text files containing six variables at several spanwise locations. Only the variables
needed at a particular boundary are used, and the other variables are ignored. The profiles are interpolated
linearly along the span of the actual grid.

Inlet and exit profile files for the current solution can be written by setting variable ispan = 1. The output file
is written to fort.15, and can be edited to extract inlet or exit profiles that can used for subsequent calculations. In
this way a multistage machine can be modeled one row at a time by using the exit profile from one blade row as
the inlet profile to the next.

ispan Flag for writing spanwise profiles to fort.15.

 = 0 No output generated, <default>.

 = 1 Spanwise profile output written to fort.15.

iqin Flag for reading inlet profile.

 = 0 Inlet conditions are calculated by subroutine qincalc based on the initial condition data,

boundary layer thicknesses, etc. in the input file. Current input values are used, so the inlet

profiles can be changed at restart if desired, <default>.

 = 1 Inlet qin-file read from fort.13. Used to read an exit profile from a solution of an upstream

blade row.

ipex Flag for reading exit pressure profile, also used to set location of prat. (see Exit Boundary

above.)

 = 1 Exit pex-file is read from fort.14.

Code Control

isymh Bottom-plane symmetry flag for ducts or linear cascades.

 = 1 Symmetry condition on k = 1.

 else Solid wall boundary condition on k = 1, <default>.

 19

isymt Top-plane symmetry flag for ducts or linear cascades.

 = 1 Symmetry condition on k = km.

 else Solid wall boundary condition on k = km, <default>.

ires Iteration increment for writing residuals in the output file. Typically 10. If the solution is

blowing up, Restart with ires = 1 to print the size and location of the maximum residual at each

iteration.

iresti Flag for reading input restart file. Restart files are in PLOT3D format.

 = 1 Read restart file from fort.2.

 else No action taken, <default>.

iresto Flag for writing output restart file.

 = 1 Write restart file to fort.3, <default>.

 else No action taken.

newkw Flag for running the k- turbulence model from scratch using a constant flow solution. Useful

for debugging the k- model.

 = 0 Run the k- model and flow solver, <default>.

 = 1 Run the k- model from initial guess for itmax cycles. Write the k- file to fort.8 and stop.

kwvars Number of variables to store in the k- file, (see Turbulence Model k- File, pp. 28).

 = 3 Stores 3 variables [μtur , k,] . Saves storage but not PLOT3D compatible.

 = 5 Stores 5 variables [μtur , k, , Retur , μlam,] . Increases storage, but makes the k- file

PLOT3D compatible, <default = 5>.

iopen Flag for opening input and output files explicitly by name.

 = 0 Files are read or written to Fortran units without explicitly opening them, <default>.

 = 1 Files are opened by name:

 grid.xyz = main grid file (binary)

 index.dat = SWIFT index file (text)

 etc., see File Names, pp. 13.

&nam4 - Flow Parameters

igeom Flag for linear cascade or annular blade row.

 = 0 Linear cascade.

 = 1 Annular blade row <default>.

ga Ratio of specific heats , < default = 1.4 for air>.

om Normalized blade row rotational speed, om = / c0r , where is the wheel speed in radians

per second, and c0r has dimensions of [grid units/sec], giving om dimensions of [1/grid units].

 20

Looking in the positive x-direction of the grid, clockwise rotation is negative and

counterclockwise rotation is positive. om is negative for most Glenn geometries. For any new

problem it is best to set om, run 1 iteration with oar =1, then plot relative velocity vectors on a

blade-to-blade plane. If the vectors go through the blade, change the sign on om. <default = 0>.

prat Ratio of the exit static pressure to the reference total pressure, prat = pexit / P0r .

expt Exponent used to specify the inlet whirl distribution.

M = M mid (r / rmid)
exp t

 where M mid is the mid-span value of M determined from the initial condition input.

 = 0 Gives uniform M except within the endwall boundary layer, <default>.

 = -1 Gives free vortex inflow.

 = 1 Gives forced vortex inflow.

&nam5 - Viscous Parameters

ilt Inviscid, Laminar, or Turbulent analysis.

 = 0 Inviscid. Most other viscous parameters are not used if ilt = 0.

 = 1 Laminar.

 = 2 Turbulent using the Baldwin-Lomax turbulence model, <default>.

 = 3 Turbulent using the Cebeci-Smith turbulence model. This model works well for turbine

heat transfer but may over predict losses for transonic compressors.

 = 4 Fully turbulent using the Wilcox baseline k- turbulence model.

 = 5 Turbulent with transition using the Wilcox low Reynolds number k- turbulence model.

Note that low Reynolds number model refers to the transition model, and not to near-wall
modifications needed by k- models.

isst Flag for the stress limiter in Wilcox’s 2006 k- model. Limits the turbulent viscosity when

production of turbulent kinetic energy exceeds destruction. Works well for shock separated

flows.

 = 0 No stress limiter, <default>.

 else Stress limiter is used.

itur The turbulence model is updated every itur iterations. Recommended values are itur = 5 for the
Baldwin- Lomax or Cebeci-Smith models, and itur = 2 for the k- model. If the k- model

blows up quickly it may help to use itur = 1 for the first 100 200 iterations, <default = 5>.

renr Reynolds number per unit length based on reference conditions, renr = 0rc0r / μ0r . Must have

units of [1/grid units]. Generally much larger that a conventional free-stream Reynolds

number. For example, for standard conditions:

renr = .0765
lbm

ft3 1116.7
ft

sec
/1.197 10 5 lbm

ft sec

= 7.143 106 / ft

 21

prnr Prandtl number, <default = 0.7 for air>.

tw Normalized wall temperature, tw = Twall /T0r .

 = 0 Adiabatic wall boundary conditions are used.

 = 1 Twall = T0r <default>.

 else Twall = tw T0r .

vispwr Exponent for laminar viscosity power law, <default vispwr = 0.667 for air>. Use vispwr = 0.0

for water.

μ / μ0r = (T /T0r)
vispwr

prtr Turbulent Prandtl number, <default = 0.9>.

cmutm Value of μturb / μ0r where transition is assumed to occur for the Baldwin-Lomax and Cebeci-

Smith models. Baldwin and Lomax recommended 14. Can be increased to move transition

downstream or vice-versa. If cmutm = 0 the flow is fully turbulent, <default = 14>.

jedge j-index where the artificial viscosity begins to ramp off near the blade. Also the last j-index

searched for the blade turbulent length scale. For the Baldwin-Lomax turbulence model (ilt =

2) jedge should be a grid line slightly bigger than the largest expected blade boundary layer.

For the Cebeci-Smith turbulence model (ilt = 3), jedge should be a grid line slightly bigger

than half the largest expected blade boundary layer, <default = 10>.

kedgh, kedgt k-indices where the artificial viscosity begins to ramp off near the hub and tip. Also the last k-

indices searched for the hub and tip turbulent length scales. See comments for jedge. <default

= 10>.

iltin Flag controlling inlet velocity and P0 profiles.

 = 0 Inviscid.

 = 1 Laminar.

 = 2 Turbulent using Cole's wall-wake profile, <default>.

dblh, dblt Inlet hub and tip boundary layer thicknesses in grid units.

xrle, xrte Axial locations where the hub starts and stops rotating. Rotational boundary conditions are

applied on the hub for xrle < x < xrte . Stationary conditions are applied elsewhere. Note that

xrle and xrte may not be sufficient to locate the rotating part of the hub in a radial flow

machine. Defaults are set to make the entire hub rotate.

irle, irte i-indices where the hub starts and stops rotating. In radial flow machines xrle and xrte may not

be sufficient to locate the rotating part of the hub, so irle and irte can be used instead. This

option only works correctly for a single block H-grid, and even then the grid lines may not be

straight. Defaults are set to make the entire hub rotate.

tintens Free-stream turbulence intensity written as a decimal. Used to set the inlet value of k for the k-
 model. Typically 0.1 or less. Very small values can cause an abrupt decay of very close to

the inlet. <default = 0.01, i.e., one percent>.

tmuinf Free-stream turbulent viscosity, Used to set the inlet value of for the k- model

 22

tlength Old input variable used to determine the inlet value of . Retained for backwards

compatibility.

 Turbulent length scale in grid units. Typically 0.03 boundary layer height, or 0.001 pitch.

 Tmuinf is used tlength is omitted, <default>.

hrough Surface roughness height in grid units. Usually hrough = 0 is used to model a hydraulically

smooth surface. To model a rough surface like a turbine blade set hrough = equivalent sand

grain roughness height, or 2 – 4 times the RMS roughness height. If the first grid point off the

wall is at y+ = 2 , then hrough must be > 2.5 ywall to have much effect.

 = 0. Hydraulically smooth surface.

 > 0. Roughness effects are modeled using the Cebeci-Chang model or Wilcox’s roughness

boundary condition for .

&nam6 - Output Control

oar Flag for frame of reference of output q-file. SWIFT automatically detects the frame of

reference of a restart q- file and converts it to the absolute frame for internal use if necessary.

 = 0. All blade rows are in the absolute frame of reference.

 = 1. All blade rows are in the relative frame of reference. <default>

mioe Flag for output format of mass flow in residual history. For transonic fans the inflow may

respond slowly to a change in back pressure, so the inlet mass flow can be monitored for

convergence. For turbines the inflow may choke quickly so the outflow can be monitored. In

general the mass flow error is a good measure of convergence and accuracy and should

converge to a fraction of a percent (e. g., < 0.003).

 = 1 Inlet mass flow history is written.

 = 2 Exit mass flow history is written.

 = 3 Mass flow error, 1 mout / min , is written, <default>.

 = 4 Eliminates the maximum residual (which always looks like the RMS residual anyway) and
prints both min and mout instead. Calculate the mass flow error yourself with EXCEL if

desired.

iqav Flag controlling type of -averaging used in the output.

 = 0 Entropy average. Mass average of [s,V , h] . Gives a good estimate of local losses,

<default>.

 = 1 Momentum average. Mass average of [, V , e] , fairly conservative, similar to the mixed-

out average.

 = 2 Mixed-out average. Formal average of inviscid fluxes gives properties far downstream.

Usually the most conservative average.

 = 3 Total pressure average. Converts P0 to an equivalent T0, mass averages, then converts back.

Often done with experimental data. Usually similar to the entropy average.

nko Number of k-indices for blade surface output, max = 10, <default = 0>.

 23

ko Array of nko k-indices separated by commas where blade surface output is desired, <default =

0>.

iog Grid block number where spanwise output is desired. Spanwise output is normally printed at

the inlet and exit of each blade grid. Sometimes it is useful to have output from other cross-

channel planes, say near the trailing edge. This output can be generated for a single grid block

by specifying the block number iog, and the desired i-indices io, <default = 1>.

io Array of up to 10 i-indices where spanwise output is desired. For H-grids output is printed at

each i index. For C-grids the i-index and its periodic neighbor are merged, <default = 0>.

ismout Flag for normalized distance sbar printed in blade surface output.

 = 1 sbar = arc length around blade.

 = 2 sbar = meridional distance along the blade.

 else sbar = axial distance x, <default>.

ileout Flag for location of leading edge (sbar = 0) printed in blade surface output.

 if ismout = 0: LE is at xmin

 if ntype = 1: LE is at ile (H-grid)

 if ileout = 0: LE is at the middle i-index

 else: LE is at ileout

 24

Initial Condition Input

2+nrow lines of data must be input immediately after the namelist input. This data is used for the initial guess
and the inlet boundary conditions. Nrow is the number of blade rows. The first line is ignored and is usually used
for column labels. The second line gives the inlet conditions at mid span, and is used to set the inlet boundary
conditions. The remaining nrow lines give row number and nominal flow exit conditions at mid span.
Unformatted reads are used; so all variables must be input.

A sample initial condition input for a seven-block grid is shown in Figure 5. A portion of the input is repeated
below.

 row P0 Mx Mt Mr T0
 0 1.0000 .1330 -.0000 0. 1.0000
 1 .9938 .1692 -.3986 0. 1.0000
 etc.

The variables are as follows:

row Integer blade row number. Row number 0 is the inlet. Subsequent row numbers represent the

exits of each blade row.

P0 P0 / P0r at mid span.

Mx Mid span Mach number in the x-direction.

Mt Mid span Mach number in the q- or y-direction.

Mr Mid span Mach number in the r- or z-direction.

T0 T0 /T0r at mid span.

 25

Index File
The index file is a text file that gives the grid sizes, connectivity, and some boundary condition information

for each grid block.
The first line is ignored and can be used for column labels. Subsequent lines give grid type, dimensions, key

indices, connecting grid numbers, blade row number, and relative rotational rate for each grid. Negative values
are sometimes used to toggle boundary condition options. One line is required for each grid. Unformatted reads
are used; so all variables must be input.

For an isolated blade row, TCGRID will produce a complete index file written to fort.10. It may be necessary
to modify nhub or ntip if the simple periodicity clearance model is to be used, or to modify the rotation
multipliers om, omh, or omt.

For multistage calculations the grids and index files for each blade row are generated separately, and merged
using the utility code called multix.f. The merged index file will have the correct block sizes and key indices, but
must be edited manually to set block connectivity, and options for mixing planes, clearances, and endwall
rotation. Additional details about generating multistage grids are given in the TCGRID user’s manual [16].

A sample index file for a seven-block grid is shown in Figure 5. A portion of the file is repeated below.

 grid type im jm km i1 i2 i3 nin nex nhub ntip nlr row om omh omt
 1 1 17 16 57 0 0 0 999 2 0 0 0 1 0. 1. 0.
 2 2 147 37 57 24 67 0 1 -3 0 0 0 1 0. 1. 0.
 3 2 161 43 57 27 74 0 -2 -5 0 4 0 2 1. 1. 0.
 etc.

Index File Variables

grid Grid (block) number, from 1 to number of grids.

type Flag giving type of grid.

 = 1 H grid for upstream

 = 2 C grid for blades

 = 3 O grid for hub or tip clearances

im Number of grid points in i-direction.

jm Number of grid points in j-direction.

km Number of grid points in k-direction.

i1 (C-grid) Lower i-index of the trailing edge. Upper index is assumed to be periodic.

i1 (H-grid) Leading-edge index of an H-grid, or flag for the type of H-grid geometry.

 = 0 Upstream H-grid ahead of a C-grid

 = 1 H-grid in a rectangular duct

 > 1 H-grid around a blade. i1 is the i-index of the leading edge.

i2 (C-grid) Lower i-index of the inlet. Upper index is assumed to be periodic.

i2 (H-grid) i-index of the trailing edge for an H-grid around a blade

i3 Unused, set to 0.

nin Inlet boundary condition flag.

 26

 = 999 C- or H-grid with conventional inlet boundary condition.

 > 0 C-grid inlet patched to upstream H-grid number nin.

 < 0 C-grid inlet mixed-out from upstream C-grid number nin.

nex Exit boundary condition flag.

 = 999 C-grid with conventional exit boundary condition.

 > 0 H-grid exit patched to downstream C-grid number nex.

 < 0 C-grid exit mixed out to downstream C-grid number nex.

nhub Flag for hub clearance.

 > 0 Connecting grid block number for gridded hub clearance.

 = 0 No hub clearance.

 < 0 Simple periodicity hub clearance model between k=1 and k=abs(nhub).

ntip Flag for tip clearance.

 > 0 Connecting grid block number for gridded tip clearance.

 = 0 No tip clearance.

 < 0 Simple periodicity tip clearance model between k=abs(ntip) and k=km.

nlr Unused, set to 0.

row Integer blade row number between 1 and the number of blade rows. Corresponds to row

number in initial condition input.

om(n) Rotation multiplier. The rotational speed for row n is om om(n) . Usually 0.0 for stators, 1.0

for rotors, or -1.0 for counter-rotating rotors. (See &nam5 – Viscous Parameters, pp. 20, for

definition of normalized blade row rotational speed om).

omh(n) Hub rotation multiplier. Rotational speed for k = 1 for row n is om omh(n) . Usually 1.0 for

rotating hubs. Overridden by variables xrle and xrte, or irle and irte, the axial locations or grid

indices where the hub starts and stops rotating (see &nam5 – Viscous Parameters, pp. 20).

omt(n) Tip rotation multiplier. Rotational speed for k = km for row n is om omt(n) . Usually 0.0 for

stationary shrouds or 1.0 for rotating shrouds.

 27

SWIFT Output
Printed output from SWIFT is written to fort.6 (standard output,) and contains the following information:

• The input variables are echoed back for reference, and any comments or warnings about the input are given.

• Spanwise profiles of -averaged flow variables are given at the inlet or exit. These variables come from the

initial guess if iresti = 0, or from the restart file if iresti = 1. The initial profiles are often useful for identifying

grid indices near the tip clearance, or near the edge of endwall boundary layers.

• A convergence history that gives maximum and RMS residuals of density, and exit flow properties versus

iteration.

• Total CPU time for all processors.

• Spanwise profiles of -averaged flow variables are given at the inlet and exit for the new solution. Four

different averaging schemes are available for computing these profiles. Most variables should be obvious,

except:

% mdot is the percent of mass flow between the hub and index k.
The last value in % mdot is the total mass flow through the annulus at that station, m / (0rcc0r) .

• Spanwise profiles of blade row performance parameters are given after each blade row. Most variables should

be obvious, except:

alpha = tan 1(v / vm)

phi = tan 1(vr / vm)

• Blade surface distributions are given of the following quantities:

x x-coordinate, grid units

r r-coordinate, grid units

sbar normalized arc length from the leading edge.

ps p / P0ref

ts T /T0ref

M_isen Isentropic Mach number

M_rel Relative Mach number, usually 0.0 except for inviscid solutions.

y+ Grid spacing at the wall in turbulent wall units. Should < 2 – 3 at most grid points for

accurate prediction of losses and heat transfer.

1000*Cf Skin friction coefficient

Cf = μ
V

n wall

1

2 inVin
2

1000*St Stanton number, usually 0.0 if tw = 0.

St = k
T

n wall
inVinCp Tin Twall()

tmu_max Maximum values of μturb / μ0r along each i grid line. Can be used to identify transition. For

the Baldwin-Lomax and Cebeci-Smith models transition occurs where tmu_max jumps

abruptly from 0 to > cmutm. For the k- model transition occurs more gradually but should

be obvious as a rapid growth of tmu_max.

 28

File Descriptions

Code for reading PLOT3D files given below is for single-block grids only. Consult the PLOT3D
documentation for details on how to read multi-block files.

Grid XYZ-File

Grids are stored using standard PLOT3D xyz-file format. Grids can be read with the following Fortran code:

c read grid coordinates
 read(1)im,jm,km
 read(1)(((x(i,j,k),i=1,im),j=1,jm),k=1,km),
 & (((y(i,j,k),i=1,im),j=1,jm),k=1,km),
 & (((z(i,j,k),i=1,im),j=1,jm),k=1,km)

Solution Q-File

Solution files are stored in standard PLOT3D q-file format. Solution files can be read with the following
Fortran code:

c read q-file
 read(2)im,jm,km
 read(2)eminf,aldeg,renr,time
 read(2)((((qq(l,i,j,k),i=1,im),j=1,jm),k=1,km),l=1,5)

c additional geometry data and residual history
 read(2)itl,iil,phdeg,ga,om,nres,igeom,dum,dum,dum
 read(2)((resd(n,l),n=1,nres),l=1,5)

The q-variables are:

q =
0r

,
u

0rc0r
,

v

0rc0r
,

w

0rc0r
,

e

0rc
2
0r

e = CvT +
1

2
(u2 + v2 + w2)

If oar = 1 the relative velocity components are stored, v = v z , w = w + y .

Turbulence Model k- File

Restart files for the k- turbulence model are stored in standard PLOT3D q-file format. Solution files can be
read with the following Fortran code:

c read tmu, k, w
 read(7)im,jm,km
 read(7)dum
 read(7)((((tkw(l,i,j,k),i=1,im),j=1,jm),k=1,km),l=1,kwvars)

The tkw-variables are:

tkw =
μtur

μ0r
,
k

c0r
2 , c0r

,
μlam

μ0r
, Retur

 29

Note that the laminar viscosity μlam and the turbulence Reynolds number Retur are not used by SWIFT.

They are written to pad the file for PLOT3D compatibility if kwvars = 5. This results in larger file sizes than
necessary. Smaller files may be generated by setting kwvars = 3, but the files cannot be read by PLOT3D.

Inlet and Exit Profiles

Inlet profiles of P0 , vx , v , vr , and T0 , and exit profiles of pstat can be specified as boundary conditions for

SWIFT. For convenience, a common file format is used for both inlet and exit. The profiles are input as text files
containing six variables at several spanwise locations. Only the variables needed at a particular boundary are
used, and the other variables are ignored. For example, vx is ignored at the inlet and can be set to zero. The

profiles are interpolated linearly along the span of the actual grid.
A sample profile file can be generated by setting variable ispan = 1. The output written to fort.15 may be

edited manually to extract the desired profile. The format is as follows:

&ospan irow = 0 kin = 95 flow = 119.25082 &end
k s/span P0/P0i vx/c0 vth/c0 vr/c0 T0/T0i ps/P0i
1 0.00000 1.12907 0.00000 -0.65789 0.00000 1.06326 0.83876
2 0.00019 0.90181 -0.07050 -0.31211 -0.01668 1.00000 0.83864
etc.

The first line is namelist input. Only kin is required.

kin Number of spanwise points.

irow Dummy variable not used by SWIFT, but useful for identifying the desired profile from an

output file. Irow gives the location of the profile, where irow = 0 is the inlet, irow = 1 is the

exit of the first blade row, irow = 2 is the exit of the second blade row, etc.

flow Dummy variable not used by SWIFT. Flow is the non-dimensional mass flow and is included

for use by the CSTALL code now under development.

The second line has titles for convenience but is not read. The remaining kin lines have the following

variables:

k Spanwise index, not used.

s/span Normalized spanwise distance, between 0.0 at the hub to 1.0 at the tip.

P0/P0i Normalized total pressure, used for inlet profiles only.

vx/c0 Normalized axial velocity, not used.

vth/c0 Normalized tangential velocity, used for inlet profiles only.

vr/c0 Normalized radial velocity, used for inlet profiles only.

ps/p0i Normalized static pressure, used for exit profiles only.

 30

Figure 1. 3-D coordinate system and grid index convention.

Figure 2. Index convention for a C-grid around a fan blade with an H-grid upstream.

 31

Figure 3 Index convention for an H-grid around a fan blade.

Figure 4. Three-block grid for a turbine stage showing overlap regions and dummy grid lines.

 32

Top: Seven-block grid for the SSME two-stage fuel turbine with rotor tip clearances.
Bottom: Block diagram of the SSME seven-block grid.

 grid type im jm km i1 i2 i3 nin nex nhub ntip nlr row om omh omt
 1 1 17 16 57 0 0 0 999 2 0 0 0 1 0. 1. 0.
 2 2 147 37 57 24 67 0 1 -3 0 0 0 1 0. 1. 0.
 3 2 161 43 57 27 74 0 -2 -5 0 4 0 2 1. 1. 0.
 4 3 109 13 13 7 49 0 0 0 0 3 0 2 1. 1. 0.
 5 2 147 37 57 24 65 0 -3 -6 0 0 0 3 0. 1. 0.
 6 2 161 43 57 31 74 0 -5 999 0 7 0 4 1. 1. 0.
 7 3 101 13 13 7 43 0 0 0 0 6 0 4 1. 1. 0.

Index file on fort.10

 row P0 Mx Mt Mr T0
 0 1.0000 .1330 -.0000 0. 1.0000
 1 .9938 .1692 -.3986 0. 1.0000
 2 .8210 .1984 .0802 0. .9518
 3 .8112 .1858 -.4175 0. .9518
 4 .7964 .3693 .0852 0. .9059

Initial condition data in SWIFT input.

Figure 5. Grid, block diagram, index file, and initial condition data for the SSME two-stage fuel turbine.

 33

Test Cases

Goldman’s Annular Turbine Vane Cascade

Figure 6. Mach contours for the Goldman annular turbine vane cascade.

This test case is an annular turbine vane cascade described by Goldman and McLallin in [17], with
computational results shown in [1, 4]. The blade is a simple extruded section with constant radius endwalls.
There are 36 vanes with a design exit Mach number of 0.665. Figure 6 shows Mach number contours through the
cascade at mid span.

The c-shell script gold.csh explains how to run the case with the central-difference, AUSM+, and H-CUSP
schemes. The Excel spreadsheet Goldman_cascade_data.xlsx compares blade surface pressures and exit total
pressure loss coefficients to experimental data. Experimental wake profiles are also included.

Space Shuttle Main Engine Two-Stage Fuel Turbine

Figure 7. Pressure contours on the space shuttle main engine fuel turbine.

The space shuttle main engine (SSME) used turbopumps to pump fuel and oxidizer from the main tank to the
combustion chamber. The high-pressure fuel turbopump used a two-stage axial flow turbine to drive the pump.
Hudson, et al tested the turbine experimentally in a cold flow test at NASA Marshall Space Flight Center, and
measured surface pressures on the stators and endwalls [19]. Dunn, et al. tested the turbine in a short duration
shock tube at Calspan, and measured blade heat transfer and unsteady pressures [18]. The SSME turbine was
used as a test case for the mixing plane capability in SWIFT in [15].

The test case uses a seven-block grid that is generated by running the script named makegrid.csh. The index
file out.ind must be modified manually to set the connectivity at the mixing planes, but the final index file,
ssme.ind, is included. The script ssme.csh runs SWIFT 2500 iterations with the AUSM+ scheme, the k-
turbulence model, and preconditioning. Preconditioning significantly improves convergence for this case even
though the flow speed is relatively high. tw is set to 0.7 for heat transfer calculations. The Excel spreadsheet,
ssme_data.xlsx, compares measured and computed pressures on the stators, and Stanton numbers on the stators
and first rotor.

 34

NASA Large, Low-Speed Centrifugal Compressor

Figure 8. Pressure contours on the large, low-speed centrifugal compressor.

The large, low-speed centrifugal compressor (LSCC) is a research rig used to make detailed measurements in
a centrifugal compressor [20]. It is 5 feet in diameter and has 20 blades with no splitters. It was used in [14] as a
test case to demonstrate preconditioning in SWIFT. Computed pressure contours on the impeller are shown in
Figure 8.

The test case uses a single-block H-grid. Running TCGRID with the input file lscc.int generates the grid. The
index file lscc.ind sets up the periodic tip clearance model over the rotor. The script lscc.csh runs SWIFT with
the AUSM+ scheme, the k- turbulence model, and preconditioning. The Excel spreadsheet, lscc-data.xlsx,
compares measured and computed blade surface pressures and exit total pressure profiles.

Rotor 37

Figure 9. Relative Mach number contours for rotor 37 at mid span.

Rotor 37 is a low aspect ratio inlet rotor for a core compressor. It has 36 multiple circular-arc (MCA) blades
and a design pressure ratio of 2.106 at a mass flow of 44.5 lb.sec. It was originally tested as a stage by Reid and
Moore [22, 23], and later the isolated rotor was tested by Suder, et al. [24]. Suder’s measurements were used for
a blind CFD test case by IGTI and AGARD. SWIFT calculations for rotor 37 were shown in [24], and computed
Mach contours at mid span are shown in Figure 9.

The 3-block grid for the rotor 37 test case is generated by running TCGRID with the input file r37.int. The
index file generated by TCGRID should identical to the included index file r37.ind. SWIFT input r37.csh is set
up to run 3000 iterations with the AUSM+ scheme, the k- turbulence model. The exit static pressure ratio prat is
set to give a solution near peak efficiency. The Excel spreadsheet rotor_37.xlxs includes a speed line computed
with other pressure ratios. It also compares measured and computed profiles of pressure ratio, temperature ratio,
adiabatic efficiency, and flow angle behind the rotor.

 35

Stage 35

Figure 10. Relative Mach number contours for stage 35 at mid span.

Stage 35 is an inlet stage for a core compressor tested by Reid and Moore [22, 23, 25]. SWIFT calculations
for stage 35 were also shown in [24]. Computed Mach contours at mid span are shown in Figure 10.

Rotors 35 and 37 have the same blade count, design speed, hub and casing radii, and tip clearance. Rotor 35
has the same blade profile as rotor 37 in the front, transonic half of the blade, so that the shock structure and
choking flow of the two rotors are the same. However, rotor 37 has more camber than rotor 35 aft of the shock,
giving a design pressure ratio of 2.106, while stage 35 has design pressure ratios of 1.865 for the rotor and 1.82
for the stage. Stator 35 has 46 MCA blades cantilevered from the casing with a clearance of ~0.5 percent span.

The 5-block grid for the stage 35 test case is generated by running the script makegrid.csh. The index file
out.ind must be modified manually to set the connectivity and other parameters, but the final index file,
stage35.index, is included. The script stage.csh runs SWIFT 3000 iterations with the AUSM+ scheme and the k-
turbulence model. The exit static pressure ratio prat is set to give a solution near peak efficiency. The Excel
spreadsheet stage_35.xlxs includes a speed line computed with other pressure ratios, and compares spanwise
profiles of several quantities behind the rotor and stator.

Rotor 67

Figure 11. Surface pressure contours on rotor 67.

Rotor 67 is the first stage rotor of a two-stage fan, with a design pressure ratio of 1.63 at a mass flow of 73.3
lb/sec. The rotor has 22 blades. Rotor 67 was tested by Strazisar, and the results were presented as a CFD test
case in Fottner [25]. CFD solutions for rotor 67 were computed with the RVC3D code and were presented in [2].

SWIFT solutions for rotor 67 are computed on a 3-block grid that is generated by running TCGRID with the
r67.int input file. The index file generated by TCGRID should be identical to the included index file r67.ind.
SWIFT input in the script r67.csh is set up to run 2000 iterations with the central-difference scheme and the k-
turbulence model. The Excel spreadsheet rotor_67.xlxs compares measured and computed speed lines for total
pressure, and profiles of pressure ratio, temperature ratio, adiabatic efficiency, and flow angle behind the rotor.

 36

References
1. Chima, R. V., Yokota, J. W., “Numerical Analysis of Three-Dimensional Viscous Flows in

Turbomachinery,” AIAA J., Vol. 28, No. 5, May 1990, pp. 798-806.

2. Chima, R. V., “Viscous Three-Dimensional Calculations of Transonic Fan Performance,” in CFD Techniques

for Propulsion Applications, AGARD Conference Proceedings No. CP-510, AGARD, Neuilly-Sur-Seine,

France, Feb. 1992, pp 21-1 to 21-19. Also NASA TM-103800.

3. Liou, M.-S., and Steffen Jr. C. J., “A New Flux Splitting Scheme,” J. Computational Physics, Vol. 107, No.

1, July 1993, pp 23-29.

4. Chima, R. V., and Liou, M.-S., “Comparison of the AUSM
+
 and H-CUSP Schemes for Turbomachinery

Applications,” AIAA Paper 2003-4120. Also NASA TM-2003-212457.

5. Tatsumi, S., Martinelli, L., and Jameson, A., “Design, Implementation, and Validation of Flux Limited

Schemes for the Solution of the Compressible Navier-Stokes Equations,” AIAA Paper 94-0647, Jan. 1994.

6. Tatsumi, S., Martinelli, L., and Jameson, A., “A New High Resolution Scheme for Compressible Viscous

Flow with Shocks,” AIAA Paper 95-0466, Jan. 1995.

7. Baldwin, B. S., and Lomax, H., “Thin-Layer Approximation and Algebraic Model for Separated Turbulent

Flows,” AIAA Paper 78-257, Jan. 1978.

8. Chima, R. V., Giel, P. W., and Boyle, R. J., “An Algebraic Turbulence Model for Three-Dimensional

Viscous Flows,” in Engineering Turbulence Modeling and Experiments 2, Rodi, W. and Martelli, F. editors,

Elsevier pub. N. Y., 1993, pp. 775-784. Also NASA TM-105931.

9. Cebeci, T. and Chang, K. C., “Calculation of Incompressible Rough-Wall Boundary Layer Flows,” AIAA

Journal, Vol. 16, July, 1978, pp. 730-735.

10. Wilcox, D. C., Turbulence Modeling for CFD, Third Edition, DCW Industries, Inc. La Canada, CA, 2006.

11. Chima, R. V., “A k- Turbulence Model for Quasi-Three-Dimensional Turbomachinery Flows,” AIAA

Paper 96-0248, Jan. 1996. Also NASA TM-107051.

12. Jameson, A., Schmidt, W., and Turkel, E., “Numerical Solutions of the Euler Equations by Finite Volume

Methods Using Runge-Kutta Time-Stepping Schemes,” AIAA Paper 81-1259, June 1981.

13. Turkel, E., “A Review of Preconditioning Methods for Fluid Dynamics,” Applied Numerical Mathematics,

Vol. 12, 1993, pp. 257-284.

14. Tweedt, D. L., Chima, R. V., and Turkel, E., “Preconditioning for Numerical Simulation of Low Mach

Number Three-Dimensional Viscous Turbomachinery Flows,” AIAA Paper 97-1828, June, 1997. Also

NASA TM- 113120.

15. Chima, R. V., “Calculation of Multistage Turbomachinery Using Steady Characteristic Boundary

Conditions,” AIAA Paper 98-0968. Also NASA TM-1998-206613.

16. Chima, R. V., “TCGRID 3-D Grid Generator for Turbomachinery - User’s Manual and Documentation,

Version 400,” July 2011. http://www.grc.nasa.gov/WWW/5810/rvc/docs/tcgrid_400.pdf

17. Goldman, L. J., and McLallin, K. L. "Cold-Air Annular Cascade Investigation of Aerodynamic Performance

of Core-Engine-Cooled Turbine Vanes. I: Solid Vane Performance and Facility Description," NASA TMX-

3224, 1975.

18. Dunn, M. G., Kim, J., Civinskas, K. C., and Boyle, R. J., "Time-Averaged Heat Transfer and Pressure

Measurements and Comparison with Prediction for a Two-Stage Turbine," J. Turbomachinery, Vol. 116, Jan.

1994, pp. 14-22.

19. Hudson, S. T., Gaddis, S. W., Johnson, P. D., and Boynton, J. L., "Cold Flow Testing of the Space Shuttle

Main Engine High Pressure Fuel Turbine," AIAA Paper 91-2503, June 1991.

 37

20. Hathaway, M. D., Chriss, R. M., Strazisar, A. J., and Wood, J. R., "Laser Anemometer Measurements of the

Three-Dimensional Rotor Flow Field in the NASA Low-Speed Centrifugal Compressor," NASA Technical

Paper 3527, June, 1995.

21. Chima, R. V., “SWIFT Code Assessment for Two Similar Transonic Compressors,” AIAA-2009-1058, Jan.

2009. Also NASA TM-2009-215520.

22. Reid, L. and Moore, R. D., "Design and Overall Performance of Four Highly-Loaded, High Speed Inlet

Stages for an Advanced, High Pressure Ratio Core Compressor," NASA TP-1337, 1978.

23. Reid, L. and Moore, R. D., "Experimental Study of Low Aspect Ratio Compressor Blading," ASME Paper

80-GT-6, Mar. 1980.

24. Suder, K. L. and Celestina, M. L., "Experimental and Computational Investigation of the Tip Clearance Flow

in a Transonic Axial Compressor Rotor," NASA TM-106711, 1994.

25. Reid, L. and Moore, R. D., "Performance of a Single-Stage Axial-Flow Transonic Compressor with Rotor

and Stator Aspect Ratios of 1.19 and 1.26 Respectively, and with Design Pressure Ratio of 1.82," NASA TP-

1228, 1978.

26. Fottner, L. ed., Test Cases for Computation of Internal Flows in Aero Engine Components, chapter V1.2,

Test Case E/CO-2 Single Transonic Fan Rotor, by Wood, J. R., Strazisar, T., and Hathaway, M., AGARD

Advisory Report No. 275, July, 1990.

